Phishing Email Detection Using Machine Learning and Natural Language Processing
Objective
To implement and compare current Machine Learning techniques integrated with Natural Language Processing for effective detection of phishing emails.
What We Offer?
- Abstract
- Code
- Documentation
- Code Explanation
- Code Executions
- Abstract
- Code
- Documentation
- Code Explanation
- Code Executions
In today’s digital age, emails serve as a crucial communication medium. However, they are often exploited by malicious users to send phishing emails, which are fraudulent attempts to steal sensitive information like login credentials and financial details. While traditional methods for phishing detection rely heavily on user vigilance, this paper proposes a more automated approach using Machine Learning techniques. Existing systems that use methods like Support Vector Classifier (SVC) require human intervention, whereas the proposed system leverages Random Forest and XGBoost for more accurate and efficient phishing detection. The proposed model achieved high accuracy, demonstrating its potential as a robust solution for phishing email detection.
Related Projects







FAQ
You Can Find All Answers Here
Est architecto molestias qui commodi omnis et nesciunt sint eum consequuntur consequatur est omnis praesentium non nemo accusantium. Eum enim consequuntur ut aliquid modi sit velit enim. Ut odit perferendis est molestiae ipsam ea repellat aliquid 33 ducimus repellendus qui.
Est architecto molestias qui commodi omnis et nesciunt sint eum consequuntur consequatur est omnis praesentium non nemo accusantium. Eum enim consequuntur ut aliquid modi sit velit enim. Ut odit perferendis est molestiae ipsam ea repellat aliquid 33 ducimus repellendus qui.
Est architecto molestias qui commodi omnis et nesciunt sint eum consequuntur consequatur est omnis praesentium non nemo accusantium. Eum enim consequuntur ut aliquid modi sit velit enim. Ut odit perferendis est molestiae ipsam ea repellat aliquid 33 ducimus repellendus qui.